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UNIVERSAL RELATIONS FOR BUBBLE GROWTH 
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Abstract-The initial-to-final vapor density ratio, when significantly greater than one, strongly influences 
vapor bubble growth rates in the inertia and the inertial/heat-transfer regimes. This effect is not predicted 
by the previous analytical formulation of Mikic, Rosenhow, and Griffith. All published experimental 
data were obtained at low values of this density ratio and have failed to uncover this omission. The 
solution shown as a universal plot in Fig. 4 does not bear this deficiency, and is supported by comparisons 

with new experimental data and detailed numerical simulations. 

NOMENCLATURE 

A, a parmeterf ( 2 AP:(pm)( Tm - T*(Pm)) . 
3 Pf T*(pco) )> 

A., 
B, 

;, 

a parameter, defined by equation (8); 

a parameter, defined by equation (9); 

specific heat ; 
pressure; 

P*(T), saturation pressure at temperature T; 

R, bubble radius; 

R*, nondimensional bubble radius, defined by 
equation (11); 

R+, nondimensional bubble radius, defined by 

equation (15); 

T, temperature; 
T*(P), saturation temperature at pressure P; 

t*, nondimensional time, defined by 

equation (11); 
t+, nondimensional time, defined by 

equation (16). 

Subscripts 

1, liquid; 

0, vapor; 

a, conditions far away from the bubble. 

Greek letters 

a, thermal diffusivity; 

B, a parameter, defined by equation (17); 

I-, a parameter, defined by equation (10); 

1, latent heat of evaporation; 

P, density; 
p*(P), saturation density at pressure P; 
p*(T), saturation density at temperature T; 

44 a parameter, defined by equation (3). 

INTRODUCTION 

INERTIA and heat transfer are known to represent the 
primary factors limiting the growth rate of vapor 
bubbles in superheated liquids. Exact solutions for each 
of the two asymptotic regimes (considering these rate 
processes individually) for spherically symmetric 
growth, and uniform superheat, were obtained by 
Rayleigh [l], &riven [2], and Birkhoff et al. [3]. For 
many years the heat-transfer regime remained im- 

portant as being representative of the practically sig- 
nificant problems. Experimental verification for this 
regime was reported for a number of fluids and con- 
ditions [4]. During the past several years, interest has 
shifted towards studying the inertia effects. This may 
be attributed to the increasing importance of liquid 
metals as heat-transfer media (e.g. in liquid metal cooled 
fast breeder reactors). In such systems the role of inertia 
is enhanced due to the diminished effect of heat trans- 
port as the rate limiting process. Indeed, many practical 
as well as diverse problems in liquid metal systems are 
reduced to vapor bubble growth in the combined 
inertial/heat-transfer regime. For example, Bankoff and 
Fauske [S] have thus studied boiling transition. Other 
applicable situations may be found in [6]. 

Numerical [7-91 as well as experimental [9, lo] 
studies established the existence, importance, and 
mathematical modelling of the combined regime. How- 
ever, only through the work of Mikic et al. [ll] did 
it become possible to obtain a comprehensive and con- 
venient analytical solution. We will refer to it as the 
MRG solution. Excellent agreement with the exper- 
imental data of Lien [ 10, 1 l] and Board and Duffy [9] 
has been reported. In comparing the MRG solution 
to our own experimental data [12,13] however, dis- 
crepancies were noted. For certain experimental con- 
ditions they were excessive; for others, very good agree- 
ment was observed. To further verify these conclusions, 
comparisons with “numerical bubble growth exper- 
iments” were made. A previously presented [8] math- 
ematical model was utilized to generate these numerical 
“data”. The same trends were noted. An illustration is 
provided in Fig. 1. The MRG solution is seen to under- 
predict the experimental growth rate of Run 55-G36, 
while good agreement between the experimental data 
and the numerical solution is observed. Clearly, an 
effect not accounted for in the MRG formulation is 
active for the experimental conditions of Run 55-G36. 
This conclusion, in effect, disputes the universality of 
the MRG solution suggested through the comparisons 
with previous experimental data. It is the purpose of 
this paper to show that an additional dimensionless 
grouping must enter the formulation in order to achieve 
a universal representation. Only the case of uniform 
superheat will be considered here. 
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- Numerical soln[E] 

--MRG soln[llJ 

0 2 3 4 5 6 

FIG. 1. A comparison of the MRG and numerical solutions 
with experimental data (run 55436, Freon- 113, superheat = 

107”F, T, = 73°F). 

FORMULATION 

The overall approach and the basic initial assump- 
tions of Mikic et al. [ 111 will be adopted here. The 
matching of the two asymptotic regimes (inertial and 
heat-transfer) is a~omplished by considering the two 
corresponding rate equations as a system: 

(2) 

(1) 

The vapor is assumed saturated and in equilibrium with 
the bubble wall liquid. This provides a relationship 
between P, and T,. They can thus be eliminated in 
order to obtain the rate of growth as a function of time. 
In the MRG solution this was accomplished by using 
the linearized ~Iausius-Cla~yron for Pa(t) and assum- 
ing a constant vapor density (p,) evaluated at P,. The 
implications of these two choices can be explained 
with reference to Fig. 2. The solid ABC line on this 
figure represents the vapor pressure curve. Point A 
represents the initial state and point C the final state 
which is approached asymptotically. During the growth 
process the vapor state is described by a point moving 
monotonically from A to C. The line CD represents 
the type of linearization utilized in the MRG solution. 
It is seen that as the superheat, AK = r, - x*(P,), 
increases, the vapor pressure is underestimated for 
greater portions of the growth and by increasing 
amounts. This leads to an underestimation of the 
growth rate given by equation (1). On the other hand 
the vapor density at point C, p$(P,), underestimates 
the actual vapor density found along ABC. This leads 
to an underestimation of the latent heat requirements 
and hence, through equation (2), to an overestimation 
of the growth rate. Again the error increases with 
superheat. Both these errors are small only for very low 
superheats. This condition, however, negates the need 

t, m!i r; 
FIG. 2. Qualitative comparison of the P,,- K assumptions. 

for the solution sought, since the heat-transfer asymp- 
totic regime is then found adequate. 

The effort in the present analysis will be to correctly 
represent vapor pressures and vapor densities at both 
end points of the process (A and C). Even a linear 
interpolation (see Fig. 2) should yield a better approxi- 
mation of the process as a whole. Clearly more 
elaborate schemes are possible. The gained incremental 
accuracy, however, does not appear to justify the 
incremental inconvenience and loss of clarity in the final 
results. Now both the pressure and the density are 
overestimated leading to an overestimation of the rate 
in equation (1) and an underestimation in equation (2). 

The factor 6, reflecting the loss in driving force may 
be defined by : 

fp = r, - T*(p,) 
T, - T*( P,) . 

(3) 

The linear interpolations for P, and p0 discussed above 
may be written as: 

P”--P, = P,*(T,)-P, = (P~(~~)_P~)~Z (4) 

PI>-- PXP,) = &(TJ - P,*(P,) 

= (PWm) -P3P,))@. (5) 

Equations (I) and (2) then become : 

dR 
- = A.4 
dt 

(6) 

and 

where : 

dR B 1-p 
-=_ 
dt 2 [f+(F-l)+2],/f 

(7) 

A2 = 2 p*(L) -pm 
* 

3 Pf 
(8) 

(9) 

and 

F = Pv*(L)/P3Pm). (10) 

The grouping B is the same as that of the MRG solution. 
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The A. differs From the A of MRG in that it represents RESULTS AND DI§CUSSION 
the exuct m~mum available pressure driving force. 
The grouping r represents a new effect not present in 

The function # = 4(t*; I-) is obtained by solving, for 

the MRG solution. It increases with superheat but the 
various values of r, the algebraic equation : 

rate of increase depends on the substance and the 
absolute pressure level. From the combination of A, 

&[I+(‘-1)“23=& (14) 

0 
10-2 I@. o-0 IO' 102 

l/41* 

FIG. 3. Solution of equation (14). 

FIG. 4. Universal plot of the bubble radius versus time. 

and B, “characteristic” length and time scales may be The results, for selected values of r up to 20, are given 
obtained and utilized to non-dimensionalize R and t in graphicaf form in Fig. 3. These results are then 
thus : utilized to obtain R* = R*(t*; I-) by numerically inte- 

R t grating equation (12). The results are presented in the 

R* = @2//Q and ‘* = @z/&t)’ (11) universal plot of Fig. 4. All lines appear to converge 
for both small values of t* (inertia regime) and large 

The system (6) and (7) finally becomes: values oft* (heat-tra~fer regime). The maximum effect 

dR* 
of I? appears at intermediate values oft*. 

dt*- -4 (12) A universal comparison with the MRG solution is 
obtained by recasting it in terms of R* and t*. Since : 

dR* (l-42) 
dt* = z[l + (I- - I)@~] Jt* ’ (131 

With the initial condition R*(O) = & the solution is 
obtained in the next section. 
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with A 

@ = A, = 

~~~(P~)( T, - T*vm)) lo 

T*(P,)(P*(T,) -Pm) 
(17) 

the MRG solution becomes : 

~~ao=~~(~‘r*+l)3;‘-(~‘r*)3’2-l). (18) 

The numeridal value of 6 was found to depend only on 
the value of r; hence a one-to-one comparison with 
the present solution is possible. The results are shown 
in Figs. 5 and 6. For clarity the solutions for only 
two values of I- are shown. Several points may be made: 

(a) For low values of T(lY = 2), the two solutions 
essentially coincide. 

(b) For high values of r the two solutions differ by 
more than a factor of two. These large differences are 
observed only in Fig. 5 covering the low range of r*. 
The two solutions converge in the high range of t* 
shown in Fig. 6. This range, however, is commonly 
outside the range of practical interest. High r implies 
high superheat and this in turn implies large character- 
istic time and hence, for the range of time values of 
practical interest, very short dimensionless time t* 
(i.e. the range covered in Fig. 5). 

- --MRG aofnDlj 
-PreSant UWI 

Numerical data: 
I 

owater. r=2 
*Freon-II3.T=20 

FIG. 5. A comparison of the MRG and present solutions 
with numerical data (discounting initial time delay due to 
surface tension effects) for different fluids and different 

conditions. 

J 
>* 

FIG. 6. A comparison of the MRG and present solutions 
with numerical data for different fluids and different con- 

ditions. 

(c) For low t* the present solution approaches the 
inertia asymptotic R* - g*, while the MRG solution 
becomes l&~o - fit*. Hence R* = R&~/j3 gives a 
measure of the maximum difference between the two 
solutions. 

All previous experimental data happen to cover only 
a small range of low I- values and have therefore been 
unable to demonstrate the effects pointed out above. 
Since details of our experimental work covering the 
high range of r will be presented separately [13], a 
complete numerical simulation [S] will be utilized here 
to support the present solution. For the high range of 
r, our Run 55-G36 with IY ct! 20, was simulated. The 
numerical results from Fig. 1 are shown, as solid circles, 
in Figs. 5 and 6. The present solution (r = 20) is 
quickly approached as surface tension and acceleration 
effects, which were retained in the numerical simulation, 
become negligible. Again the somewhat gradual ap- 
proach of the numerical data to the present solution 
for the Water Bl case of Fig. 5 is due to the initially 
present acceleration effects. Similar numerical simu- 
lations are shown, Fig. 6, for low values of r. A variety 
of fluids and conditions were utilized to show the 
universally good agreement between the present solu- 
tion and the numerical simulations. 

Both the MRG and the present solution rely heavily 
on a rather fortuitous self-cancelling of the errors dis- 
cussed in the formulation section. It would be expected 
that the MRG solution would tend to overestimate, 
while the present solution underestimate, 4. Further- 
more, the present solution should provide a superior 
prediction of 4 for early times. These effects are graphi- 
cally presented in Fig. 7. for a typical high-r case. The 
numerical result again is accepted as the correct one. 
A tentative rule-of-thumb resulted from all such com- 
parisons: The numerical d, values, for the slowly vary- 
ing portion of the function, fall approximately midway 
between the MRG and the present solution. 

IO ---_ 

~ 

----_ 
---_ 

. --Numerxal soin [8] 

- - MRG soln [II] 

- Present work 

FIG. 7. A comparison of the MRG and present solutions 
with the numerical solution for the variation of cb with time. 
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CONCLUSIONS 

The maximum error in the MRG solution is (/3 - 1) x 
100 per cent. The value of fl depends only on the 
initial-to-final vapor density ratio, r, and may be 
calculated from : 

p = 

i 
M(Pm)(~m - T*(Pm)) Ii2 
~*(pm)(p*G) -Pco) I . 

Previous comparisons with bubble growth data have 
failed to uncover this effect because they all happened 
to fall in the low l-’ range. The correct solution may 
be read off Fig. 4, covering the mixed inertia/heat- 
transfer portion of the universal growth curves. For 
t* < 10m3 the inertia solution, R* N t*, is valid within 
20 per cent and for t* > 10’ the heat-transfer solution 
R* = J(t*) is valid within 15 per cent. Again the value 
of l-’ affects these limits. The numbers given are, of 
course, valid for 1 < r < 20. The present as well as the 
MRG solution fail to accurately predict the vapor 
pressure (temperature) transient, which usually falls 
midway between the two predictions. A fortuitous 
error self-cancellation is responsible for the correct 
prediction of the radius growth curve for high-r 
conditions. 
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RELATIONS UNIVERSELLES POUR LE DEVELOPPEMENT DES BULLES 

R&um&Lorsqu’il est nettement suptrieur g I’uniti?, le rapport des densit& initiale et finale de vapeur 
influe fortement sur le taux de croissance des bulles de vapeur dans les regimes d’inertie et de transfert 
thermique inertiel. Cet effet n’est pas prbu par les formulations analytiques antbieures de Mikic, Rosenhow 
et Griffith. Toutes les donnks expbrimentales publiks ont i?tk obtenues pour de faibles valeurs de ce rapport 
de densi& et n’ont pas permis de dtiouvrir cette omission. La solution reprbentC par une courbe 
universelle sur la Fig. 4 ne comporte pas cette imperfection, et se trouve corrobork par les comparaisons 

avec des nouvelles donnks exp&imentales et des simulations numkriques dttaillks. 

UNIVERSELLE BEZIEHUNGEN FUR DAS BLASENWACHSTUM 

Zusammenfassung-Wenn das Verhgltnis der anfinglichen zur endgiiltigen Dampfdichte deutlich gro;l?er 
als eins ist, so beeinfluBt es stark das Dampfblasenwachstum in den von Trlgheitskraft und den von 
Trigheitskraft/Wiirmeiibergang kontrollierten Systemen. Dieser EinfluD ist in den friiheren analytischen 
Formulierungen von Mikic, Rohsenow und Griffith nicht enthalten. Alle veriiffentlichten experimentellen 
Daten wurden bei kleinen Werten dieses Dichteverhlltnisses gewonnen und haben daher diese Auslassung 
nicht enthiillt. Die in der universellen Darstellung in Fig. 4 gezeigte Liisung hat diesen Nachteil nicht 
und wird gestiitzt durch Vergleiche mit neuen experimentellen Daten und detaillierten numerischen 

Untersuchungen. 

YHIIBEPCAJIbHbIE COOTHOIIIEHm fiJIa PACYETA POCTA I-IY3bIPbKOB 

I~~WWW~ - CKOPOCTb pOCTa IlapOBbIX lly3bIpbICOB B HHepIUiOHHOM H HHepUHOHHO-TeIUIOO6MeH- 

WOM De)lcBMBx CH,IbHO 3aBHCHT OT oTHomeHH,I HaW,,IbHofi ,UoTHOCTH napa K KoHeqHo&, ec,IH BeJIH- 

¶EHB 3TOrO OTHOmeHFfIl HaMHOl-0 6onbme elGiHHUb1. AaHHbIa 3@&ICT He BbITeKDZT A3 H3B%THO# 

l$OpMyjlbI Mm, PO3eHay H rpH~&IHTa. Bee OlQ’6JlHKOBaHIibIe 3KClIepHMeHTWIbHbIe JWiHbIe 

6b1mi IIOny’ieHdI IIPH H&OJIbIIIEX 3HWieHWIX OTHOmeHHR IIJIOTHOCTeti, ‘IT0 He II03BOnHnO o6aapy- 

lKHTb yIlJ’fIIl?HUS. &IleHlie, rIpt?J_WTaBJIeHHOe B BHAe yHHBepCi%lbHOti KpABOft Ha p%iC. 4, He o6nasaer 

yKa3iSHHbIM AeAOCTaTKOM Ei IlOATBepSKA~TCff IiOBbIMB 3KClTepHMeHTUbHbIMH pe3yJIbTilTaMH H 

rIOApO6HbrMWCJIeHHbIMMOAWIHjJOBaHHeM. 
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